changed method for detecting sun start time brightness from time to sun position in sky

This commit is contained in:
Seth Samuel 2024-11-04 20:57:47 +13:00
parent 041c51042d
commit 21a9aeeeac
3 changed files with 9 additions and 180 deletions

View file

@ -6,6 +6,7 @@
#include <stdlib.h>
#include <atomic>
#include <SolarCalculator.h> //for determining startup brightness
#include <TimeLib.h>
#define DISPLAY_ADDRESS 0x70 //I2C address of screen
#define GPS_WAIT_TIME 1100
#define GPS_UPDATE_FREQUENCY 10 //GPS update frequency per sec
@ -14,13 +15,6 @@
//GPS
SFE_UBLOX_GPS myGPS;
double lat = 0;
double lng = 0;
int tzOff = 12; //local TZ offset
bool centuryBit; //needed to get month from RTC
double az, elev; //for sun location in the sky
double transit, sunrise, sunset; //sun related times
double civilTransit, civilRiise, civilSet; //astro related times
//threading
std::atomic<float> speed(0);
@ -30,11 +24,6 @@ std::atomic_int gpsFixType(0);
Adafruit_AlphaNum4 disp = Adafruit_AlphaNum4();
unsigned long timeOfLastFix = 0UL;
//speed calc
//float averageSpeed = 0;
//int speedSlot = 0; //for placing the speed in the array for smoothing
//float *speedArray;
//button
volatile bool buttonPushed = false;
volatile int ScreenBrightnessUser = 15;
@ -72,19 +61,17 @@ void connectGPS() { //need to do this everytime the GPS turns back on
}
bool setStartBrightness() {
while (!(myGPS.getFixType() > 0)) {}
double GPSTime=myGPS.getHour()+(myGPS.getMinute()/60);
while (!(myGPS.getFixType() > 0)) {} //wait here untill gps gets a fix
double az, el;
setTime(myGPS.getHour(),myGPS.getMinute(),myGPS.getSecond(),myGPS.getDay(),myGPS.getMonth(),myGPS.getYear());
time_t timeUtc=now();
calcHorizontalCoordinates(timeUtc,myGPS.getLatitude(),myGPS.getLongitude(),az,el);
//get sunset time
calcSunriseSunset(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, transit, sunrise, sunset);
//get civilSet time
calcCivilDawnDusk(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, civilTransit, civilRiise, civilSet);
if(GPSTime<sunset){
if(el>SUNRISESET_STD_ALTITUDE){
screenBrightnessCurrent=15;
} else if ((GPSTime>sunrise)&&(GPSTime<civilSet)){
} else if ((el<SUNRISESET_STD_ALTITUDE)&&(el>CIVIL_DAWNDUSK_STD_ALTITUDE)){
screenBrightnessCurrent=MIDDLE_SCREEN_BRIGHTNESS;
} else if (GPSTime>civilSet){
} else if (el<CIVIL_DAWNDUSK_STD_ALTITUDE){
screenBrightnessCurrent=0;
}
disp.setBrightness(screenBrightnessCurrent);

View file

@ -1,16 +0,0 @@
char * hoursToString(double h, char *str)
{
int m = int(round(h * 60));
int hr = (m / 60) % 24;
int mn = m % 60;
str[0] = (hr / 10) % 10 + '0';
str[1] = (hr % 10) + '0';
str[2] = ':';
str[3] = (mn / 10) % 10 + '0';
str[4] = (mn % 10) + '0';
str[5] = '\0';
return str;
}

View file

@ -1,142 +0,0 @@
#include <math.h>
//#define PI 3.1415926
#define ZENITH -.83
/* zenith calc
offical = 90 degrees 50'
civil = 96 degrees
nautical = 102 degrees
astronomical = 108 degrees
http://edwilliams.org/sunrise_sunset_algorithm.htm
*/
float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
/*
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
*/
//1. first calculate the day of the year
float N1 = floor(275 * month / 9);
float N2 = floor((month + 9) / 12);
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
float N = N1 - (N2 * N3) + day - 30;
//2. convert the longitude to hour value and calculate an approximate time
float lngHour = lng / 15.0;
float t = N + ((6 - lngHour) / 24); //if rising time is desired:
//float t = N + ((18 - lngHour) / 24) //if setting time is desired:
//3. calculate the Sun's mean anomaly
float M = (0.9856 * t) - 3.289;
//4. calculate the Sun's true longitude
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
//5a. calculate the Sun's right ascension
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
//5b. right ascension value needs to be in the same quadrant as L
float Lquadrant = floor( L/90) * 90;
float RAquadrant = floor(RA/90) * 90;
RA = RA + (Lquadrant - RAquadrant);
//5c. right ascension value needs to be converted into hours
RA = RA / 15;
//6. calculate the Sun's declination
float sinDec = 0.39782 * sin((PI/180)*L);
float cosDec = cos(asin(sinDec));
//7a. calculate the Sun's local hour angle
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
/*
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
*/
//7b. finish calculating H and convert into hours
float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
//float H = acos(cosH) // if setting time is desired:
H = H / 15;
//8. calculate local mean time of rising/setting
float T = H + RA - (0.06571 * t) - 6.622;
//9. adjust back to UTC
float UT = fmod(T - lngHour,24.0);
//10. convert UT value to local time zone of latitude/longitude
return UT + localOffset + daylightSavings;
}
float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
/*
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
*/
//1. first calculate the day of the year
float N1 = floor(275 * month / 9);
float N2 = floor((month + 9) / 12);
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
float N = N1 - (N2 * N3) + day - 30;
//2. convert the longitude to hour value and calculate an approximate time
float lngHour = lng / 15.0;
//float t = N + ((6 - lngHour) / 24); //if rising time is desired:
float t = N + ((18 - lngHour) / 24); //if setting time is desired:
//3. calculate the Sun's mean anomaly
float M = (0.9856 * t) - 3.289;
//4. calculate the Sun's true longitude
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
//5a. calculate the Sun's right ascension
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
//5b. right ascension value needs to be in the same quadrant as L
float Lquadrant = floor( L/90) * 90;
float RAquadrant = floor(RA/90) * 90;
RA = RA + (Lquadrant - RAquadrant);
//5c. right ascension value needs to be converted into hours
RA = RA / 15;
//6. calculate the Sun's declination
float sinDec = 0.39782 * sin((PI/180)*L);
float cosDec = cos(asin(sinDec));
//7a. calculate the Sun's local hour angle
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
/*
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
*/
//7b. finish calculating H and convert into hours
//float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
float H = (180/PI)*acos(cosH);// if setting time is desired:
H = H / 15;
//8. calculate local mean time of rising/setting
float T = H + RA - (0.06571 * t) - 6.622;
//9. adjust back to UTC
float UT = fmod(T - lngHour,24.0);
//10. convert UT value to local time zone of latitude/longitude
return UT + localOffset + daylightSavings;
}
/*
void printSunrise() {
float localT = calculateSunrise(args);
double hours;
float minutes = modf(localT,&hours)*60;
printf("%.0f:%.0f",hours,minutes);
}
*/