From 21a9aeeeac8e81df762b29e1092b27b75f33f6ae Mon Sep 17 00:00:00 2001 From: Seth Date: Mon, 4 Nov 2024 20:57:47 +1300 Subject: [PATCH] changed method for detecting sun start time brightness from time to sun position in sky --- GPSSpeedMultiCore.ino | 31 +++------ helperFunctions.h | 16 ----- sunriseSunset.h | 142 ------------------------------------------ 3 files changed, 9 insertions(+), 180 deletions(-) delete mode 100644 helperFunctions.h delete mode 100644 sunriseSunset.h diff --git a/GPSSpeedMultiCore.ino b/GPSSpeedMultiCore.ino index d3b20ee..b5238f8 100644 --- a/GPSSpeedMultiCore.ino +++ b/GPSSpeedMultiCore.ino @@ -6,6 +6,7 @@ #include #include #include //for determining startup brightness +#include #define DISPLAY_ADDRESS 0x70 //I2C address of screen #define GPS_WAIT_TIME 1100 #define GPS_UPDATE_FREQUENCY 10 //GPS update frequency per sec @@ -14,13 +15,6 @@ //GPS SFE_UBLOX_GPS myGPS; -double lat = 0; -double lng = 0; -int tzOff = 12; //local TZ offset -bool centuryBit; //needed to get month from RTC -double az, elev; //for sun location in the sky -double transit, sunrise, sunset; //sun related times -double civilTransit, civilRiise, civilSet; //astro related times //threading std::atomic speed(0); @@ -30,11 +24,6 @@ std::atomic_int gpsFixType(0); Adafruit_AlphaNum4 disp = Adafruit_AlphaNum4(); unsigned long timeOfLastFix = 0UL; -//speed calc -//float averageSpeed = 0; -//int speedSlot = 0; //for placing the speed in the array for smoothing -//float *speedArray; - //button volatile bool buttonPushed = false; volatile int ScreenBrightnessUser = 15; @@ -72,19 +61,17 @@ void connectGPS() { //need to do this everytime the GPS turns back on } bool setStartBrightness() { - while (!(myGPS.getFixType() > 0)) {} - double GPSTime=myGPS.getHour()+(myGPS.getMinute()/60); + while (!(myGPS.getFixType() > 0)) {} //wait here untill gps gets a fix + double az, el; + setTime(myGPS.getHour(),myGPS.getMinute(),myGPS.getSecond(),myGPS.getDay(),myGPS.getMonth(),myGPS.getYear()); + time_t timeUtc=now(); + calcHorizontalCoordinates(timeUtc,myGPS.getLatitude(),myGPS.getLongitude(),az,el); - //get sunset time - calcSunriseSunset(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, transit, sunrise, sunset); - //get civilSet time - calcCivilDawnDusk(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, civilTransit, civilRiise, civilSet); - - if(GPSTimeSUNRISESET_STD_ALTITUDE){ screenBrightnessCurrent=15; - } else if ((GPSTime>sunrise)&&(GPSTimeCIVIL_DAWNDUSK_STD_ALTITUDE)){ screenBrightnessCurrent=MIDDLE_SCREEN_BRIGHTNESS; - } else if (GPSTime>civilSet){ + } else if (el -//#define PI 3.1415926 -#define ZENITH -.83 - -/* zenith calc -offical = 90 degrees 50' -civil = 96 degrees -nautical = 102 degrees -astronomical = 108 degrees -http://edwilliams.org/sunrise_sunset_algorithm.htm -*/ -float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) { - /* - localOffset will be <0 for western hemisphere and >0 for eastern hemisphere - daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0 - */ - //1. first calculate the day of the year - float N1 = floor(275 * month / 9); - float N2 = floor((month + 9) / 12); - float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3)); - float N = N1 - (N2 * N3) + day - 30; - - //2. convert the longitude to hour value and calculate an approximate time - float lngHour = lng / 15.0; - float t = N + ((6 - lngHour) / 24); //if rising time is desired: - //float t = N + ((18 - lngHour) / 24) //if setting time is desired: - - //3. calculate the Sun's mean anomaly - float M = (0.9856 * t) - 3.289; - - //4. calculate the Sun's true longitude - float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0); - - //5a. calculate the Sun's right ascension - float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0); - - //5b. right ascension value needs to be in the same quadrant as L - float Lquadrant = floor( L/90) * 90; - float RAquadrant = floor(RA/90) * 90; - RA = RA + (Lquadrant - RAquadrant); - - //5c. right ascension value needs to be converted into hours - RA = RA / 15; - - //6. calculate the Sun's declination - float sinDec = 0.39782 * sin((PI/180)*L); - float cosDec = cos(asin(sinDec)); - - //7a. calculate the Sun's local hour angle - float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat)); - /* - if (cosH > 1) - the sun never rises on this location (on the specified date) - if (cosH < -1) - the sun never sets on this location (on the specified date) - */ - - //7b. finish calculating H and convert into hours - float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired: - //float H = acos(cosH) // if setting time is desired: - H = H / 15; - - //8. calculate local mean time of rising/setting - float T = H + RA - (0.06571 * t) - 6.622; - - //9. adjust back to UTC - float UT = fmod(T - lngHour,24.0); - - //10. convert UT value to local time zone of latitude/longitude - return UT + localOffset + daylightSavings; - - } - float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) { - /* - localOffset will be <0 for western hemisphere and >0 for eastern hemisphere - daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0 - */ - //1. first calculate the day of the year - float N1 = floor(275 * month / 9); - float N2 = floor((month + 9) / 12); - float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3)); - float N = N1 - (N2 * N3) + day - 30; - - //2. convert the longitude to hour value and calculate an approximate time - float lngHour = lng / 15.0; - //float t = N + ((6 - lngHour) / 24); //if rising time is desired: - float t = N + ((18 - lngHour) / 24); //if setting time is desired: - - //3. calculate the Sun's mean anomaly - float M = (0.9856 * t) - 3.289; - - //4. calculate the Sun's true longitude - float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0); - - //5a. calculate the Sun's right ascension - float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0); - - //5b. right ascension value needs to be in the same quadrant as L - float Lquadrant = floor( L/90) * 90; - float RAquadrant = floor(RA/90) * 90; - RA = RA + (Lquadrant - RAquadrant); - - //5c. right ascension value needs to be converted into hours - RA = RA / 15; - - //6. calculate the Sun's declination - float sinDec = 0.39782 * sin((PI/180)*L); - float cosDec = cos(asin(sinDec)); - - //7a. calculate the Sun's local hour angle - float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat)); - /* - if (cosH > 1) - the sun never rises on this location (on the specified date) - if (cosH < -1) - the sun never sets on this location (on the specified date) - */ - - //7b. finish calculating H and convert into hours - //float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired: - float H = (180/PI)*acos(cosH);// if setting time is desired: - H = H / 15; - - //8. calculate local mean time of rising/setting - float T = H + RA - (0.06571 * t) - 6.622; - - //9. adjust back to UTC - float UT = fmod(T - lngHour,24.0); - - //10. convert UT value to local time zone of latitude/longitude - return UT + localOffset + daylightSavings; - - } -/* - void printSunrise() { - float localT = calculateSunrise(args); - double hours; - float minutes = modf(localT,&hours)*60; - printf("%.0f:%.0f",hours,minutes); - } - */ \ No newline at end of file