sets the initial brightness based on the time
This commit is contained in:
parent
50b724dabc
commit
041c51042d
2 changed files with 190 additions and 25 deletions
|
|
@ -5,6 +5,7 @@
|
|||
#include "Adafruit_LEDBackpack.h" //for screen
|
||||
#include <stdlib.h>
|
||||
#include <atomic>
|
||||
#include <SolarCalculator.h> //for determining startup brightness
|
||||
#define DISPLAY_ADDRESS 0x70 //I2C address of screen
|
||||
#define GPS_WAIT_TIME 1100
|
||||
#define GPS_UPDATE_FREQUENCY 10 //GPS update frequency per sec
|
||||
|
|
@ -13,6 +14,13 @@
|
|||
|
||||
//GPS
|
||||
SFE_UBLOX_GPS myGPS;
|
||||
double lat = 0;
|
||||
double lng = 0;
|
||||
int tzOff = 12; //local TZ offset
|
||||
bool centuryBit; //needed to get month from RTC
|
||||
double az, elev; //for sun location in the sky
|
||||
double transit, sunrise, sunset; //sun related times
|
||||
double civilTransit, civilRiise, civilSet; //astro related times
|
||||
|
||||
//threading
|
||||
std::atomic<float> speed(0);
|
||||
|
|
@ -29,10 +37,11 @@ unsigned long timeOfLastFix = 0UL;
|
|||
|
||||
//button
|
||||
volatile bool buttonPushed = false;
|
||||
volatile int screenBrightnessButton = 15;
|
||||
volatile int screenBrightnessCurrent = screenBrightnessButton;
|
||||
volatile int ScreenBrightnessUser = 15;
|
||||
volatile int screenBrightnessCurrent = ScreenBrightnessUser;
|
||||
volatile unsigned long lastButtonPush = 0UL;
|
||||
|
||||
|
||||
void chageBrightness() {
|
||||
if (millis() - lastButtonPush > DEBOUNCE_DELAY) {
|
||||
buttonPushed = true;
|
||||
|
|
@ -42,14 +51,14 @@ void chageBrightness() {
|
|||
|
||||
void connectGPS() { //need to do this everytime the GPS turns back on
|
||||
do { //set gps to 115200 baudrate code comes from sparkfun examples
|
||||
Serial.println("GNSS: trying 115200 baud");
|
||||
// Serial.println("GNSS: trying 115200 baud");
|
||||
Serial1.begin(115200);
|
||||
if (myGPS.begin(Serial1) == true) break;
|
||||
delay(100);
|
||||
Serial.println("GNSS: trying 9600 baud");
|
||||
//Serial.println("GNSS: trying 9600 baud");
|
||||
Serial1.begin(9600);
|
||||
if (myGPS.begin(Serial1) == true) {
|
||||
Serial.println("GNSS: connected at 9600 baud, switching to 115200");
|
||||
// Serial.println("GNSS: connected at 9600 baud, switching to 115200");
|
||||
myGPS.setSerialRate(115200);
|
||||
delay(100);
|
||||
} else {
|
||||
|
|
@ -62,18 +71,33 @@ void connectGPS() { //need to do this everytime the GPS turns back on
|
|||
myGPS.setDynamicModel(DYN_MODEL_AUTOMOTIVE); //set dynamic model of GPS to automotive to more accutate results
|
||||
}
|
||||
|
||||
bool setStartBrightness() {
|
||||
while (!(myGPS.getFixType() > 0)) {}
|
||||
double GPSTime=myGPS.getHour()+(myGPS.getMinute()/60);
|
||||
|
||||
//get sunset time
|
||||
calcSunriseSunset(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, transit, sunrise, sunset);
|
||||
//get civilSet time
|
||||
calcCivilDawnDusk(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, civilTransit, civilRiise, civilSet);
|
||||
|
||||
if(GPSTime<sunset){
|
||||
screenBrightnessCurrent=15;
|
||||
} else if ((GPSTime>sunrise)&&(GPSTime<civilSet)){
|
||||
screenBrightnessCurrent=MIDDLE_SCREEN_BRIGHTNESS;
|
||||
} else if (GPSTime>civilSet){
|
||||
screenBrightnessCurrent=0;
|
||||
}
|
||||
disp.setBrightness(screenBrightnessCurrent);
|
||||
return true;
|
||||
}
|
||||
|
||||
void setup() {
|
||||
//setup screen
|
||||
Wire.setSCL(17);
|
||||
Wire.setSDA(16);
|
||||
//Wire.setClock(100000);
|
||||
disp.begin(DISPLAY_ADDRESS);
|
||||
disp.setBrightness(screenBrightnessButton);
|
||||
disp.clear();
|
||||
disp.writeDigitAscii(0, 71); //"G"
|
||||
disp.writeDigitAscii(1, 80); //"P"
|
||||
disp.writeDigitAscii(2, 83); //"S"
|
||||
disp.writeDisplay();
|
||||
disp.setBrightness(ScreenBrightnessUser);
|
||||
|
||||
//screen brightness
|
||||
pinMode(20, INPUT_PULLUP);
|
||||
|
|
@ -86,30 +110,29 @@ void setup1() {
|
|||
Serial1.setRX(1);
|
||||
Serial1.setTX(0);
|
||||
connectGPS();
|
||||
setStartBrightness();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
|
||||
//change brightness
|
||||
if (buttonPushed == true) {
|
||||
if (screenBrightnessButton == 15) {
|
||||
screenBrightnessButton = MIDDLE_SCREEN_BRIGHTNESS;
|
||||
} else if (screenBrightnessButton == MIDDLE_SCREEN_BRIGHTNESS) {
|
||||
screenBrightnessButton = 0;
|
||||
if (ScreenBrightnessUser == 15) {
|
||||
ScreenBrightnessUser = MIDDLE_SCREEN_BRIGHTNESS;
|
||||
} else if (ScreenBrightnessUser == MIDDLE_SCREEN_BRIGHTNESS) {
|
||||
ScreenBrightnessUser = 0;
|
||||
} else {
|
||||
screenBrightnessButton = 15;
|
||||
ScreenBrightnessUser = 15;
|
||||
}
|
||||
disp.setBrightness(screenBrightnessButton);
|
||||
screenBrightnessCurrent=screenBrightnessButton;
|
||||
disp.setBrightness(ScreenBrightnessUser);
|
||||
screenBrightnessCurrent = ScreenBrightnessUser;
|
||||
buttonPushed = false;
|
||||
}
|
||||
|
||||
disp.clear();
|
||||
if (gpsFixType.load() > 0) {
|
||||
if (screenBrightnessCurrent != screenBrightnessButton){
|
||||
disp.setBrightness(screenBrightnessButton);
|
||||
screenBrightnessCurrent=screenBrightnessButton;
|
||||
if (screenBrightnessCurrent != ScreenBrightnessUser) {
|
||||
disp.setBrightness(ScreenBrightnessUser);
|
||||
screenBrightnessCurrent = ScreenBrightnessUser;
|
||||
}
|
||||
timeOfLastFix = millis(); //reset no gps screen display
|
||||
int temp = speed.load() * 10;
|
||||
|
|
|
|||
142
sunriseSunset.h
Normal file
142
sunriseSunset.h
Normal file
|
|
@ -0,0 +1,142 @@
|
|||
|
||||
#include <math.h>
|
||||
//#define PI 3.1415926
|
||||
#define ZENITH -.83
|
||||
|
||||
/* zenith calc
|
||||
offical = 90 degrees 50'
|
||||
civil = 96 degrees
|
||||
nautical = 102 degrees
|
||||
astronomical = 108 degrees
|
||||
http://edwilliams.org/sunrise_sunset_algorithm.htm
|
||||
*/
|
||||
float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
|
||||
/*
|
||||
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
|
||||
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
|
||||
*/
|
||||
//1. first calculate the day of the year
|
||||
float N1 = floor(275 * month / 9);
|
||||
float N2 = floor((month + 9) / 12);
|
||||
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
|
||||
float N = N1 - (N2 * N3) + day - 30;
|
||||
|
||||
//2. convert the longitude to hour value and calculate an approximate time
|
||||
float lngHour = lng / 15.0;
|
||||
float t = N + ((6 - lngHour) / 24); //if rising time is desired:
|
||||
//float t = N + ((18 - lngHour) / 24) //if setting time is desired:
|
||||
|
||||
//3. calculate the Sun's mean anomaly
|
||||
float M = (0.9856 * t) - 3.289;
|
||||
|
||||
//4. calculate the Sun's true longitude
|
||||
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
|
||||
|
||||
//5a. calculate the Sun's right ascension
|
||||
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
|
||||
|
||||
//5b. right ascension value needs to be in the same quadrant as L
|
||||
float Lquadrant = floor( L/90) * 90;
|
||||
float RAquadrant = floor(RA/90) * 90;
|
||||
RA = RA + (Lquadrant - RAquadrant);
|
||||
|
||||
//5c. right ascension value needs to be converted into hours
|
||||
RA = RA / 15;
|
||||
|
||||
//6. calculate the Sun's declination
|
||||
float sinDec = 0.39782 * sin((PI/180)*L);
|
||||
float cosDec = cos(asin(sinDec));
|
||||
|
||||
//7a. calculate the Sun's local hour angle
|
||||
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
|
||||
/*
|
||||
if (cosH > 1)
|
||||
the sun never rises on this location (on the specified date)
|
||||
if (cosH < -1)
|
||||
the sun never sets on this location (on the specified date)
|
||||
*/
|
||||
|
||||
//7b. finish calculating H and convert into hours
|
||||
float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
|
||||
//float H = acos(cosH) // if setting time is desired:
|
||||
H = H / 15;
|
||||
|
||||
//8. calculate local mean time of rising/setting
|
||||
float T = H + RA - (0.06571 * t) - 6.622;
|
||||
|
||||
//9. adjust back to UTC
|
||||
float UT = fmod(T - lngHour,24.0);
|
||||
|
||||
//10. convert UT value to local time zone of latitude/longitude
|
||||
return UT + localOffset + daylightSavings;
|
||||
|
||||
}
|
||||
float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
|
||||
/*
|
||||
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
|
||||
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
|
||||
*/
|
||||
//1. first calculate the day of the year
|
||||
float N1 = floor(275 * month / 9);
|
||||
float N2 = floor((month + 9) / 12);
|
||||
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
|
||||
float N = N1 - (N2 * N3) + day - 30;
|
||||
|
||||
//2. convert the longitude to hour value and calculate an approximate time
|
||||
float lngHour = lng / 15.0;
|
||||
//float t = N + ((6 - lngHour) / 24); //if rising time is desired:
|
||||
float t = N + ((18 - lngHour) / 24); //if setting time is desired:
|
||||
|
||||
//3. calculate the Sun's mean anomaly
|
||||
float M = (0.9856 * t) - 3.289;
|
||||
|
||||
//4. calculate the Sun's true longitude
|
||||
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
|
||||
|
||||
//5a. calculate the Sun's right ascension
|
||||
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
|
||||
|
||||
//5b. right ascension value needs to be in the same quadrant as L
|
||||
float Lquadrant = floor( L/90) * 90;
|
||||
float RAquadrant = floor(RA/90) * 90;
|
||||
RA = RA + (Lquadrant - RAquadrant);
|
||||
|
||||
//5c. right ascension value needs to be converted into hours
|
||||
RA = RA / 15;
|
||||
|
||||
//6. calculate the Sun's declination
|
||||
float sinDec = 0.39782 * sin((PI/180)*L);
|
||||
float cosDec = cos(asin(sinDec));
|
||||
|
||||
//7a. calculate the Sun's local hour angle
|
||||
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
|
||||
/*
|
||||
if (cosH > 1)
|
||||
the sun never rises on this location (on the specified date)
|
||||
if (cosH < -1)
|
||||
the sun never sets on this location (on the specified date)
|
||||
*/
|
||||
|
||||
//7b. finish calculating H and convert into hours
|
||||
//float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
|
||||
float H = (180/PI)*acos(cosH);// if setting time is desired:
|
||||
H = H / 15;
|
||||
|
||||
//8. calculate local mean time of rising/setting
|
||||
float T = H + RA - (0.06571 * t) - 6.622;
|
||||
|
||||
//9. adjust back to UTC
|
||||
float UT = fmod(T - lngHour,24.0);
|
||||
|
||||
//10. convert UT value to local time zone of latitude/longitude
|
||||
return UT + localOffset + daylightSavings;
|
||||
|
||||
}
|
||||
/*
|
||||
void printSunrise() {
|
||||
float localT = calculateSunrise(args);
|
||||
double hours;
|
||||
float minutes = modf(localT,&hours)*60;
|
||||
printf("%.0f:%.0f",hours,minutes);
|
||||
}
|
||||
*/
|
||||
Loading…
Add table
Add a link
Reference in a new issue