sets the initial brightness based on the time

This commit is contained in:
Seth Samuel 2024-11-01 21:42:12 +13:00
parent 50b724dabc
commit 041c51042d
2 changed files with 190 additions and 25 deletions

View file

@ -5,6 +5,7 @@
#include "Adafruit_LEDBackpack.h" //for screen #include "Adafruit_LEDBackpack.h" //for screen
#include <stdlib.h> #include <stdlib.h>
#include <atomic> #include <atomic>
#include <SolarCalculator.h> //for determining startup brightness
#define DISPLAY_ADDRESS 0x70 //I2C address of screen #define DISPLAY_ADDRESS 0x70 //I2C address of screen
#define GPS_WAIT_TIME 1100 #define GPS_WAIT_TIME 1100
#define GPS_UPDATE_FREQUENCY 10 //GPS update frequency per sec #define GPS_UPDATE_FREQUENCY 10 //GPS update frequency per sec
@ -13,6 +14,13 @@
//GPS //GPS
SFE_UBLOX_GPS myGPS; SFE_UBLOX_GPS myGPS;
double lat = 0;
double lng = 0;
int tzOff = 12; //local TZ offset
bool centuryBit; //needed to get month from RTC
double az, elev; //for sun location in the sky
double transit, sunrise, sunset; //sun related times
double civilTransit, civilRiise, civilSet; //astro related times
//threading //threading
std::atomic<float> speed(0); std::atomic<float> speed(0);
@ -29,10 +37,11 @@ unsigned long timeOfLastFix = 0UL;
//button //button
volatile bool buttonPushed = false; volatile bool buttonPushed = false;
volatile int screenBrightnessButton = 15; volatile int ScreenBrightnessUser = 15;
volatile int screenBrightnessCurrent = screenBrightnessButton; volatile int screenBrightnessCurrent = ScreenBrightnessUser;
volatile unsigned long lastButtonPush = 0UL; volatile unsigned long lastButtonPush = 0UL;
void chageBrightness() { void chageBrightness() {
if (millis() - lastButtonPush > DEBOUNCE_DELAY) { if (millis() - lastButtonPush > DEBOUNCE_DELAY) {
buttonPushed = true; buttonPushed = true;
@ -42,14 +51,14 @@ void chageBrightness() {
void connectGPS() { //need to do this everytime the GPS turns back on void connectGPS() { //need to do this everytime the GPS turns back on
do { //set gps to 115200 baudrate code comes from sparkfun examples do { //set gps to 115200 baudrate code comes from sparkfun examples
Serial.println("GNSS: trying 115200 baud"); // Serial.println("GNSS: trying 115200 baud");
Serial1.begin(115200); Serial1.begin(115200);
if (myGPS.begin(Serial1) == true) break; if (myGPS.begin(Serial1) == true) break;
delay(100); delay(100);
Serial.println("GNSS: trying 9600 baud"); //Serial.println("GNSS: trying 9600 baud");
Serial1.begin(9600); Serial1.begin(9600);
if (myGPS.begin(Serial1) == true) { if (myGPS.begin(Serial1) == true) {
Serial.println("GNSS: connected at 9600 baud, switching to 115200"); // Serial.println("GNSS: connected at 9600 baud, switching to 115200");
myGPS.setSerialRate(115200); myGPS.setSerialRate(115200);
delay(100); delay(100);
} else { } else {
@ -62,18 +71,33 @@ void connectGPS() { //need to do this everytime the GPS turns back on
myGPS.setDynamicModel(DYN_MODEL_AUTOMOTIVE); //set dynamic model of GPS to automotive to more accutate results myGPS.setDynamicModel(DYN_MODEL_AUTOMOTIVE); //set dynamic model of GPS to automotive to more accutate results
} }
bool setStartBrightness() {
while (!(myGPS.getFixType() > 0)) {}
double GPSTime=myGPS.getHour()+(myGPS.getMinute()/60);
//get sunset time
calcSunriseSunset(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, transit, sunrise, sunset);
//get civilSet time
calcCivilDawnDusk(myGPS.getYear(), myGPS.getMonth(), myGPS.getDay(), lat, lng, civilTransit, civilRiise, civilSet);
if(GPSTime<sunset){
screenBrightnessCurrent=15;
} else if ((GPSTime>sunrise)&&(GPSTime<civilSet)){
screenBrightnessCurrent=MIDDLE_SCREEN_BRIGHTNESS;
} else if (GPSTime>civilSet){
screenBrightnessCurrent=0;
}
disp.setBrightness(screenBrightnessCurrent);
return true;
}
void setup() { void setup() {
//setup screen //setup screen
Wire.setSCL(17); Wire.setSCL(17);
Wire.setSDA(16); Wire.setSDA(16);
//Wire.setClock(100000); //Wire.setClock(100000);
disp.begin(DISPLAY_ADDRESS); disp.begin(DISPLAY_ADDRESS);
disp.setBrightness(screenBrightnessButton); disp.setBrightness(ScreenBrightnessUser);
disp.clear();
disp.writeDigitAscii(0, 71); //"G"
disp.writeDigitAscii(1, 80); //"P"
disp.writeDigitAscii(2, 83); //"S"
disp.writeDisplay();
//screen brightness //screen brightness
pinMode(20, INPUT_PULLUP); pinMode(20, INPUT_PULLUP);
@ -86,30 +110,29 @@ void setup1() {
Serial1.setRX(1); Serial1.setRX(1);
Serial1.setTX(0); Serial1.setTX(0);
connectGPS(); connectGPS();
setStartBrightness();
} }
void loop() { void loop() {
//change brightness //change brightness
if (buttonPushed == true) { if (buttonPushed == true) {
if (screenBrightnessButton == 15) { if (ScreenBrightnessUser == 15) {
screenBrightnessButton = MIDDLE_SCREEN_BRIGHTNESS; ScreenBrightnessUser = MIDDLE_SCREEN_BRIGHTNESS;
} else if (screenBrightnessButton == MIDDLE_SCREEN_BRIGHTNESS) { } else if (ScreenBrightnessUser == MIDDLE_SCREEN_BRIGHTNESS) {
screenBrightnessButton = 0; ScreenBrightnessUser = 0;
} else { } else {
screenBrightnessButton = 15; ScreenBrightnessUser = 15;
} }
disp.setBrightness(screenBrightnessButton); disp.setBrightness(ScreenBrightnessUser);
screenBrightnessCurrent=screenBrightnessButton; screenBrightnessCurrent = ScreenBrightnessUser;
buttonPushed = false; buttonPushed = false;
} }
disp.clear(); disp.clear();
if (gpsFixType.load() > 0) { if (gpsFixType.load() > 0) {
if (screenBrightnessCurrent != screenBrightnessButton){ if (screenBrightnessCurrent != ScreenBrightnessUser) {
disp.setBrightness(screenBrightnessButton); disp.setBrightness(ScreenBrightnessUser);
screenBrightnessCurrent=screenBrightnessButton; screenBrightnessCurrent = ScreenBrightnessUser;
} }
timeOfLastFix = millis(); //reset no gps screen display timeOfLastFix = millis(); //reset no gps screen display
int temp = speed.load() * 10; int temp = speed.load() * 10;

142
sunriseSunset.h Normal file
View file

@ -0,0 +1,142 @@
#include <math.h>
//#define PI 3.1415926
#define ZENITH -.83
/* zenith calc
offical = 90 degrees 50'
civil = 96 degrees
nautical = 102 degrees
astronomical = 108 degrees
http://edwilliams.org/sunrise_sunset_algorithm.htm
*/
float calculateSunrise(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
/*
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
*/
//1. first calculate the day of the year
float N1 = floor(275 * month / 9);
float N2 = floor((month + 9) / 12);
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
float N = N1 - (N2 * N3) + day - 30;
//2. convert the longitude to hour value and calculate an approximate time
float lngHour = lng / 15.0;
float t = N + ((6 - lngHour) / 24); //if rising time is desired:
//float t = N + ((18 - lngHour) / 24) //if setting time is desired:
//3. calculate the Sun's mean anomaly
float M = (0.9856 * t) - 3.289;
//4. calculate the Sun's true longitude
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
//5a. calculate the Sun's right ascension
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
//5b. right ascension value needs to be in the same quadrant as L
float Lquadrant = floor( L/90) * 90;
float RAquadrant = floor(RA/90) * 90;
RA = RA + (Lquadrant - RAquadrant);
//5c. right ascension value needs to be converted into hours
RA = RA / 15;
//6. calculate the Sun's declination
float sinDec = 0.39782 * sin((PI/180)*L);
float cosDec = cos(asin(sinDec));
//7a. calculate the Sun's local hour angle
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
/*
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
*/
//7b. finish calculating H and convert into hours
float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
//float H = acos(cosH) // if setting time is desired:
H = H / 15;
//8. calculate local mean time of rising/setting
float T = H + RA - (0.06571 * t) - 6.622;
//9. adjust back to UTC
float UT = fmod(T - lngHour,24.0);
//10. convert UT value to local time zone of latitude/longitude
return UT + localOffset + daylightSavings;
}
float calculateSunset(int year,int month,int day,float lat, float lng,int localOffset, int daylightSavings) {
/*
localOffset will be <0 for western hemisphere and >0 for eastern hemisphere
daylightSavings should be 1 if it is in effect during the summer otherwise it should be 0
*/
//1. first calculate the day of the year
float N1 = floor(275 * month / 9);
float N2 = floor((month + 9) / 12);
float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
float N = N1 - (N2 * N3) + day - 30;
//2. convert the longitude to hour value and calculate an approximate time
float lngHour = lng / 15.0;
//float t = N + ((6 - lngHour) / 24); //if rising time is desired:
float t = N + ((18 - lngHour) / 24); //if setting time is desired:
//3. calculate the Sun's mean anomaly
float M = (0.9856 * t) - 3.289;
//4. calculate the Sun's true longitude
float L = fmod(M + (1.916 * sin((PI/180)*M)) + (0.020 * sin(2 *(PI/180) * M)) + 282.634,360.0);
//5a. calculate the Sun's right ascension
float RA = fmod(180/PI*atan(0.91764 * tan((PI/180)*L)),360.0);
//5b. right ascension value needs to be in the same quadrant as L
float Lquadrant = floor( L/90) * 90;
float RAquadrant = floor(RA/90) * 90;
RA = RA + (Lquadrant - RAquadrant);
//5c. right ascension value needs to be converted into hours
RA = RA / 15;
//6. calculate the Sun's declination
float sinDec = 0.39782 * sin((PI/180)*L);
float cosDec = cos(asin(sinDec));
//7a. calculate the Sun's local hour angle
float cosH = (sin((PI/180)*ZENITH) - (sinDec * sin((PI/180)*lat))) / (cosDec * cos((PI/180)*lat));
/*
if (cosH > 1)
the sun never rises on this location (on the specified date)
if (cosH < -1)
the sun never sets on this location (on the specified date)
*/
//7b. finish calculating H and convert into hours
//float H = 360 - (180/PI)*acos(cosH); // if if rising time is desired:
float H = (180/PI)*acos(cosH);// if setting time is desired:
H = H / 15;
//8. calculate local mean time of rising/setting
float T = H + RA - (0.06571 * t) - 6.622;
//9. adjust back to UTC
float UT = fmod(T - lngHour,24.0);
//10. convert UT value to local time zone of latitude/longitude
return UT + localOffset + daylightSavings;
}
/*
void printSunrise() {
float localT = calculateSunrise(args);
double hours;
float minutes = modf(localT,&hours)*60;
printf("%.0f:%.0f",hours,minutes);
}
*/